Группе ученых, в которую входили представители из научных учреждений самых различных стран и направлений, удалось вырастить специальный вид бактерий и соединить этих бактерий с элементами микроэлектронных схем для того, чтобы получить так называемые «бактериальные интегральные схемы». Основой
Группе ученых, в которую входили представители из научных учреждений самых различных стран и направлений, удалось вырастить специальный вид бактерий и соединить этих бактерий с элементами микроэлектронных схем для того, чтобы получить так называемые «бактериальные интегральные схемы». Основой функционирования одного «бактериального элемента» является динамика популяции его бактерий, которая превращает его в синхронизированный генетический генератор. Управление всем этим осуществляется путем регулирования концентрации ионов тяжелых металлов в среде существования этих бактерий, а результатами работы бактерий является концентрация заряженных ионов, входящих в состав метаболитов (продуктов жизнедеятельности бактерий), которая считывается при помощи специальных электродов.
Более того, создав матрицу миниатюрных электродов и связей между ними, можно составить достаточно сложные генетико-электронные схемы, нацеленные на выполнение определенных функций и способных взаимодействовать с другими подобными схемами или различными чисто электронными устройствами. Все это открывает массу новых возможностей в областях синтетической биологии, аналитической химии, микроэлектроники и т.п.
Одной из главных проблем «бактериальных чипов» является их малое быстродействие. К примеру, созданный учеными экспериментальный датчик демонстрирует реакцию спустя 40 плюс минус 10 минут на оказанное воздействие. Длительность этой реакции напрямую зависит от скорости обмена белками между бактериями и у ученых уже имеются некоторые идеи насчет существенного ускорения этого процесса.
{full-story limit=»10000″}
Источник: